
Team NaviGator AMS 1 of 11

University of Florida: Team NaviGator AMS

Daniel Frank, Andrew Gray, Kevin Allen, Tess Bianchi, Kipling Cohen, Daniel Dugger, Jake Easterling, Matthew

Griessler, Sylvie Hyman, Matthew Langford, Ralph Leyva, Lucas Murphy, Jason Nezvadovitz, Anthony Olive, Blake

Peterson, David Soto, Forrest Voight, Daniel Volya, Timothy Williams, Dr. Eric Schwartz, Dr. Carl Crane, Dr. Ira Hill, and

Shannon Ridgeway

Abstract—NaviGator ASV is a fully autonomous surface

vehicle (ASV) built to compete in the Association for Unmanned

Vehicle Systems International (AUVSI) Foundation’s 2016

Maritime RobotX Challenge in Oahu, Hawaii. The NaviGator

ASV is part of a larger group of collaborative autonomous aerial,

surface, and subsurface vehicles known as the NaviGator

Autonomous Maritime System (AMS). This paper describes the

NaviGator ASV’s structural design, propulsion, power system,

electrical design, software infrastructure, outreach efforts, and

approach to completing the challenges presented in the 2016

Maritime RobotX Challenge.

I. INTRODUCTION

The University of Florida’s (UF) Team NaviGator AMS is a

multidisciplinary group composed of undergraduate and

graduate students from the departments of Electrical and

Computer Engineering and Mechanical Engineering. This

project is primarily sponsored by the Machine Intelligence

Lab (MIL), which has nearly 20 years of experience in

competing in the AUVSI Foundation’s robotics competitions,

including numerous championships in the RoboSub and

RoboBoat Competitions. Due to the larger scale of the

Maritime RobotX Challenge, MIL has partnered with the

Center for Intelligent Machines and Robotics (CIMAR), a lab

that has competed in three DARPA challenges and has

extensive experience with developing highly intelligent large-

scale autonomous vehicles. Between MIL’s experience in

autonomous maritime systems design and CIMAR’s

experience in software architecture design, Team NaviGator

AMS feels that they have created a winning combination and

look forward to competing in the Maritime RobotX Challenge.

II. VEHICLE DESIGN

This section of the paper will describe the hardware and

software that was developed for this competition, as well as

the motivations behind these choices. This will include

descriptions of early iterations of hardware and software that

may have failed, what was learned in that process, and how

that knowledge was integrated to improve on the designs.

A. Mechanical Systems

The mechanical platform used for the NaviGator ASV is a

modified WAM-V research vessel developed by Marine

Advanced Research. Several of the mechanical modifications

that the team has made will be detailed in this section. A

computer-aided design (CAD) render of the NaviGator ASV is

shown in Fig 1.

1) Propulsion: NaviGator ASV’s propulsion system began

as two forward-facing stern thrusters, providing the ASV with

a skid-steer configuration. After a short time of testing, it

became apparent that adding more thrusters and mounting

them at an angle would simplify the vectoring of the thrust to

achieve a desired motion, as well as adding the capability of

lateral motion. The current configuration features two bow and

two stern thrusters oriented at a fixed 45 degrees. This is a

thruster configuration that the team used in the 2013

RoboBoat Competition with much success, earning first place.

In addition to improved maneuverability, using four thrusters

provides redundancy in the system, allowing the ASV to still

have maneuverability even if either both bow thrusters or both

stern thrusters fail. This feature was invaluable when a motor

driver died minutes before a qualification run in the 2013

RoboBoat Competition. With a quick modification to the

thruster mapper program, the ASV was able to operate with

just three thrusters, saving the run. The major disadvantage of

this configuration is that the fixed angles of the thrusters

means that it is not particularly efficient moving in any

direction. However, for the tasks that the Navigator ASV is

designed to perform, maneuverability is significantly more

important than efficiency.

Fig 1. CAD render of the NaviGator ASV

Mounting the thrusters posed many challenges and required

several design iterations, especially for the bow thrusters. For

the ASV to be deployed from a trailer, the bow thrusters had

to be either removed or raised during deployment so they

would not collide with the trailer structure. The transom

clamps on the trolling motors accommodated this function. 3D

printed polycarbonate clamping blocks that interfaced with the

Team NaviGator AMS 2 of 11

clamps on the trolling motors kept them fixed in place. While

the mounts held the motors securely, the 3D printed parts

began to crack and eventually failed. To solve this issue, the

clamping blocks were machined from aluminum.

2) Sensor Mast: The need for a stable sensor platform is

paramount in machine vision applications. The preliminary

design utilized an 80/20 aluminum rail truss, which did not

provide the required stiffness and resulted in smearing of the

vessel’s detection data. The initial sensor platform also did not

raise the LIDAR system high enough to permit detection of

obstacles in immediate proximity to the pontoons, a problem

rectified in the final design.

As previously mentioned, the cameras, LIDAR, and GPS

antenna require a rigid support. The need for an unobstructed

GPS antenna guided the design towards a mast structure. For

transport to the competition site, the assembly had to fit within

the prescribed envelope of a Pelican Products transport case,

requiring a modular assembly process. These target

specifications led to a base-and-tree assembly, where the mast

is simply welded to a plate that then fastens to the payload tray

via a superstructure. For corrosion resistance and

manufacturability, 6063 aluminum was chosen. To simplify

the assembly process, fastener types were standardized. The

mast is centered laterally on the ASV, which helps create a

well-defined coordinate system that permits simpler software

transformations. The sensor mast can be seen in Fig 2.

Fig 2. The NaviGator ASV’s sensor mast

3) Electronics Box: NaviGator ASV’s electronics are

housed in a Thule Sidekick cargo box. The team originally

considered commercial waterproof boxes, but began looking

for other options due to their high costs. One student

suggested the idea of using a cargo box after being inspired by

family road trips they had taken when they were younger.

While traditionally used to mount on the top of cars to provide

additional storage, the cargo box was an ideal electronics

enclosure due to its watertight integrity, aerodynamic form

factor, low cost, and a side-opening mechanism that makes it

very easy to access all of the electronic components.

The box’s watertight integrity prevented the team from

using air circulation for cooling. Instead, a combination of

techniques are used to cool the box. First, an adhesive

reflective covering was applied to the lid of the box to reflect

heat generated by solar radiation. Second, the box has an

active water cooling system that is used to remove the heat

generated from the electronic components inside the box.

Fiberglass inserts were used to mount all of the components

inside of the box. These inserts add rigidity to the relatively

flimsy box and make it easy to add or remove components

from the box. The components that need to be frequently

removed, e.g., the hard drives, are attached to the fiberglass

with Velcro. The rest of the components are attached with

traditional fasteners.

4) Racquetball Launcher: A system for delivering the

racquetballs into the target for the Detect and Deliver task was

developed by breaking the challenge into subtasks that were

solved independently. The two main subtasks that were

considered were moving the balls into the target and feeding

the balls to the mover. Several ideas for moving the balls were

considered, ranging from a catapult to a robotic arm that

would drop the balls into the target. Prototypes of several

designs were built and tested. One design featured two

counter-rotating wheels attached to the trolling motors that

were once part of PropaGator 1, the team’s submission to the

2013 RoboBoat Competition. The trolling motors were

originally used as part of an early prototype, but since they

were already waterproof, were effective at launching the balls

consistently, and were readily available, the trolling motors

were incorporated into the final design.

The ball launching mechanism was designed so that any

type of ball feeder could be integrated into it. This allowed the

team to test multiple types of ball feeder mechanisms,

including a carousel and a linear actuator. A prototype of the

linear actuator racquetball launcher can be seen in Fig 3. After

the carousel mechanism was found to be prone to jamming,

the linear actuator design was selected. Additional design

criteria that were considered were the ease of loading balls and

how quickly all four balls could be launched. Ball loading was

addressed by designing a spring-loaded 3D printed ball

magazine that is easily detachable. To achieve rapid-fire, the

team developed a closed-bolt system. After a ball is loaded

into the chamber, it is withheld at the minimum distance from

the wheels to reduce the amount of time it takes to fire. In

order to prevent premature firing, a retention lip is used.

Fig 3. Prototype of the linear actuator racquetball launcher

Team NaviGator AMS 3 of 11

5) Anglerfish: The Anglerfish is a remotely operated vehicle

(ROV) designed to assist NaviGator ASV in completing the

Underwater Shape Identification and the Find the Break

challenges. Anglerfish [1], shown in Fig 4, is designed to be

controlled by the NaviGator ASV via a 30 meter tether that

provides both power and two-way communication to the

ROV. The tether is also strong enough to be used as a method

to recover the submersible.

Fig 4. The Anglerfish ROV, a student-designed vessel created to assist the

NaviGator ASV in the Maritime RobotX Challenge

The preliminary tasks descriptions of the competition stated

that there would be a denied area above the Find the Break

challenge. In this challenge, Anglerfish would be deployed

from NaviGator ASV using a spool system. Once in the water,

Anglerfish would descend to a pre-defined depth. Next, it

would use a camera to search for the objects on the bottom of

competition field. Once an object was found, it would report

the object type and the object’s position in order to complete

the challenge. However, the latest version of the rules

removed the denied area. This change on the constraints of the

challenge opened the door for much simpler solutions, making

Anglerfish obsolete.

6) Camera Deployment System: Once the denied area

restriction was lifted for the Find the Break challenge, the

team decided to use a simpler method to solve this task that

did not include the use of Anglerfish. The solution that was

developed is a deployable underwater camera that is able to

observe the bottom of the course. This mechanism consists of

a rigid beam that extends vertically into the water that is

attached to the support beam between the pontoons of the

NaviGator ASV. It is also possible to manually store and

deploy the camera through a simple bolt system.

B. Electrical Systems

Robustness and simplicity were the primary motivating

factors behind the design of the NaviGator ASV’s electrical

system. The team focused on these aspects in order to get a

testable system built quickly and minimize any downtime due

to electrical failure.

1) Power System: The salient features of the power system

are the dual battery power supply and the power merge board.

The NaviGator ASV’s power requirements surpassed those of

MIL’s other projects in both the amount of power and required

power source durability. Solving these challenges required

looking outside the typical battery suppliers MIL used in the

past. To be able to supply adequate power to four thrusters,

computers, sensors, and communication hardware, the ASV

uses two Torqueedo Power 26-104 batteries. Each battery

powers two of the thrusters and contributes to the power rail

that powers all other devices on the NaviGator ASV.

2) Student-designed Electronics:

a) Power merge board: The power merge board is a

student-designed printed circuit board assembly (PCBA). It

uses two Texas Instruments LM5050 High Side OR-ing FET

controllers as ideal diode rectifiers to balance and parallel the

two batteries into one rail that supplies four output ports. This

makes the system more fault tolerant to a failing battery, a

feature used in normal operation to switch batteries out

without turning the system off. One of the strengths of MIL is

the ability to design hardware and software that can be reused

on other projects and vehicles. This is the third vehicle for

which this board design has been utilized. The design was

originally created for PropaGator 1 and then used on

PropaGator 2, both of which have competed in the RoboBoat

Competition.

b) Passive sonar: The passive sonar is a student-designed

PCBA that implements a signal conditioner with for four

Reson hydrophones. The timing information from the

hydrophones is put in a buffer and sent to the computer for

processing. The hydrophone PCBA design has proven to be

extremely versatile in that NaviGator ASV will be the sixth

autonomous vehicle from MIL to use this passive sonar design

in an AUVSI Foundation competition.

c) Kill system: The hardware kill system consists of two

student-designed PCBAs and four off-the-shelf twist to detent

kill switches. The kill system for the vehicle also has a

software component. The kill board monitors the status of six

kill sources. When any of the six sources request a kill, the kill

board cuts power to the thruster motor controllers. The six kill

sources are the four off-the-shelf switches that are mounted

around the vehicle, a remote kill switch, and the computer.

The remote kill switch operates over a 900 MHz radio link and

displays the hardware kill status of the vehicle. The kill board

is also used to control the NaviGator ASV’s indicator lights

and a siren used to ward off curious watercraft during testing.

C. Software Systems

The NaviGator ASV utilizes an open source software

environment known as the Robot Operating System (ROS).

The team has been using ROS for their entries to the

RoboBoat and RoboSub Competitions since 2012 and the

students in the lab are active contributors to the ROS

community. ROS was chosen as the programming architecture

for NaviGator ASV because it compartmentalizes specific

pieces of executable code into nodes. This allows the team to

use software that was developed in previous competitions to

be used on the NaviGator ASV, greatly reducing development

Team NaviGator AMS 4 of 11

time. For example, much of the stereo vision software that is

used on the ASV, was ported directly from code that was

developed last year on SubjuGator 8, the lab’s latest entry for

the RoboSub Competition.

1) Object Detection and Classification: The lowest level

perception service available on the NaviGator ASV is the

Occupancy Grid Server. Occupancy grids are a two-

dimensional grid-like representation of the environment

generated by the sensor suite available on the ASV. The

generated map contains both the occupied and unoccupied

regions in the environment. This information is provided to

the server via any range-detecting sensor onboard. On the

ASV, the primary range-detecting sensor is a Velodyne VLP-

16 LIDAR. A LIDAR uses lasers to provide relatively dense

range information of the environment. This information is then

segmented by regions containing dense clusters of relatively

close points. These bounding regions are treated as obstacles,

and are placed in the occupancy grid. This information is then

provided to higher level services such as the motion planner

and Classification Server.

In the Classification Server, the points generated by the

LIDAR are clustered into regions on the occupancy grid where

it decides which of these distinct regions are objects. The ASV

then looks at the bounding box of this object and classifies the

object based on the dimensions of its bounding box. The

software detects if the object has a prominent plane. If it does,

then this information is attached to the object. These objects

are then accessible to other programs through the use of a list

of detected objects.

2) Motion Planning: Motion planning is the process of

finding a sequence of inputs that bring a given system from its

initial state to a goal state. In most cases, there are an infinite

number of ways for the same goal to be achieved. Ambiguity

among these solutions can be reduced in a useful way by

adding two more criteria to the problem statement; optimality

and constraints.

Typically, optimality is characterized by a scalar function

that assigns a cost to every possible state-input pair. Optimal

solutions are the ones which also have the smallest total cost.

Constraints are characterized by a binary function which

classifies every possible state-input pair as either being

allowable or forbidden. Allowable solutions are the ones

which are allowable at every step.

For the NaviGator ASV, a goal state is defined as the

desired GPS waypoint and vehicle heading with zero linear

and angular velocity. Succinctly, achieving a goal means

coming to rest at some new desired pose. An allowable plan is

abstractly defined as one that does not collide with another

object, and an optimal plan is defined as one which finishes in

minimal time. The exact way these criteria are mathematically

formulated depends on the motion planning algorithm being

used. Like any planner, it is necessary to define the dynamics

by which the ASV's state evolves with time.

The spin speeds of the ASV’s thrusters can be varied fast

enough to be treated as the inputs to the physical system. The

thrusters apply forces to the ASV, so that control is said to be

at the acceleration-level, i.e., the ASV’s position as well as

linear and angular velocities must be included in its state

vector. The model for the vehicle was determined using the

marine surface-craft dynamics provided in [2].

The dynamics of this model include the inertial effects of

both the ASV and the water it pushes with it, as well as a

quadratic hydrodynamic drag model. Parameter values for the

ASV were first approximated by applying known forces to the

system and trying to match simulated velocities to actual

velocities. The results of this parameter-tuning were later

refined with rigorous system identification methods.

Regardless, some model uncertainty is acceptable due to

feedback in the control architecture, which will be explained

in detail in the Motion Control section of this paper.

To solve the now defined planning problem, first the team

implemented the popular differential dynamic programming

(DDP) algorithm given in [3]. DDP does not directly invoke

an allowable-or-forbidden function for hard constraints.

Rather, obstacles have to be encoded in the cost function itself

as areas of high cost. DDP starts with a guess at the optimal

sequence of inputs, performs a forward-pass where it

simulates the dynamics over that sequence of inputs, and then

performs a backward-pass where it recursively perturbs each

input value according to the local cost of its associated state.

Each local cost region is approximated as a quadratic, so

essentially the algorithm is an iterative linear quadratic

regulator (LQR) solver for an arbitrary global cost function.

However, the cost function still needs to be twice

differentiable, a restriction that led to some inadequacies. An

example of each iteration of DDP being used to navigate a

buoy field can be seen in Fig 5. It should be noted that what is

shown is only the 2D positional cross-section of the full cost

field, which is really defined on the full 6D state-space.

Fig 5. An example of each iteration of the DDP algorithm used for navigating

a buoy field

Team NaviGator AMS 5 of 11

Obstacles cannot be represented in the DDP cost function as

steep, well-defined spikes or walls of cost. They have to be

smooth enough to allow for stable numerical differentiation.

For example, the buoy field cost function is defined in (1).

𝑙 = 𝑒𝑇𝑄𝑒 + 𝑢𝑇𝑅𝑢 + ∑ (
𝐴𝑖

2
(cos (

𝜋𝑑𝑖

𝑟𝑖
) + 1) 𝑤(𝑟𝑖))𝑁

𝑖=1 (1)

In this cost function, e is the vector from the current state to

the goal state, u is the control input vector, di is the distance

from the current state's position to the ith buoy center, ri is the

buoy's radius, w(*) is a 2D windowing function, N is the

number of buoys, and Q, R, and Ai are weights on goal error,

effort, and buoy nearness respectively.

By representing each obstacle as a cosine hump

superimposed on a quadratic bowl centered on the goal state,

convergence to the optimal solution was numerically stable.

However, whether or not the plan truly collided with a buoy,

i.e., by crossing too close into a fuzzy boundary, depended

strongly on proper tuning of Ai. Fundamentally, the DDP

solver guarantees local optimality but requires a very well-

advised cost function to guarantee plans that do not actually

collide. Another problem is its lack of flexibility. For example,

a special new cost term has to be conjured up for each shape

of obstacle that is expected to be encountered.

For a safer and more flexible planner, the team sought out

an algorithm that can handle strict, well-defined constraints.

The rapidly-exploring random tree (RRT) algorithm is highly

efficient for this scenario [4]. The algorithm starts with a seed

node at the ASV’s initial state. It then randomly samples a

state in the region of navigational interest. A nearness function

is applied to every node currently in the tree, and then that

node is extended or steered towards the random state

following a policy function. The endpoint of that extension is

added as a new node to the tree only if it is allowable, and the

algorithm repeats. If an extension, or any intermediate state

leading up to it, is not allowable, that iteration is simply

abandoned. Once a node reaches the goal region, the tree is

efficiently climbed from the goal back to the seed, and is

classified as one solution to the planning problem. The best of

the found solutions is defined as the one that takes the least

amount of time. The goal region is likely to be reached

because one can bias tree-growth towards it by shaping the

probability density function from which random states are

sampled.

Since every portion of the tree is only retained if it is

allowable, all paths generated are guaranteed to obey every

hard constraint. Additionally, constraints like obstacles can be

easily encoded as an occupancy-grid look-up table inside the

allowable-or-forbidden function. Most RRT implementations

differ in what they do for the nearness and steer functions. The

team primarily used the popular LQR-RRT* methods given in

[5]. An example of the NaviGator ASV’s RRT planning

towards a goal region is shown in Fig 6. Obstacles are

expressed as exact forbidden regions for which no portion of

the ASV can enter. The tree only contains these allowable

states, so safety is guaranteed. However, as randomness is

intrinsic to the planner, it is only probabilistically optimal.

Fig 6. An example of the NaviGator ASV’s RRT planning towards a goal

region

After selecting the RRT algorithm for safety and flexibility,

the final step was to integrate the algorithm with a real-time

system. One of the biggest difficulties in doing this was

dealing with a highly nonstatic environment. Obstacles

spontaneously appear when they get in range of the perception

system. This means that a valid path can suddenly become

invalid with only seconds to spare. To make efficient use of

time, the planner should always be planning the next move so

that the RRT has more time to get a better solution. To handle

this, the planner had to be made asynchronously interruptible,

and a lot of plan-reevaluation and crisis-aversion logic had to

be built in to elegantly deal with spontaneously appearing

and/or moving obstacles that cross the ASV’s current path.

The ASV’s real-time ROS-integrated RRT algorithm being

run for an arbitrarily drawn, complicated occupancy grid can

be seen in Fig 7. Tree nodes can be seen in blue. The ASV

was only given one second to plan its first move. It used its

time during the first move to plan its second move, shown in

red. While the paths generated using this method are safe and

useful for solving the problem of navigation in the

competition, the team is actively working on improved

heuristics for smoothing out the paths.

Fig 7. The NaviGator ASV’s real-time ROS-integrated RRT algorithm being

run on an arbitrarily drawn, complicated occupancy grid

3) Motion Control: Since the RRT motion planner uses a

model of the ASV, in principle it would be possible to employ

Team NaviGator AMS 6 of 11

a model-predictive control architecture in which the ASV

rapidly re-plans from its current state to steer it back onto the

desired path. However, due to the randomness inherent to the

RRT itself, such a method did not work well in practice. Thus,

the team opted to make use of the sequence of states generated

by the motion planner rather than the inputs to define the

reference a feedback controller tracks.

First, a simple manually-tuned full-state feedback PD

controller was used. Tracking along straight paths was nearly

perfect with this alone, providing a positional steady-state

error of less than 0.25 meters. However, along curves, a larger

positional steady-state error of a few meters would always

emerge depending on the curvature. Even the introduction of a

standard integral term did not fix this problem.

The team figured that this was because an integral of the

world-frame error alone would only be able to compensate for

disturbances that are constant in the world-frame. Simulation

revealed that the sources of the curved motion disturbances

were centripetal-Coriolis effects and heading-dependent drag

forces. A more intelligent integrator would be necessary to

compensate for these state-dependent disturbances. Most

marine and aerial systems accomplish this by using a model-

reference adaptive control (MRAC) architecture. A block

diagram of the MRAC controller used for the ASV is shown in

Fig 8. In this diagram, yref is the current state in the sequence

generated by the motion planner, u is the control effort choice,

and y is the actual state.

Fig 8. Block diagram of the MRAC controller used on the NaviGator ASV [6]

The team implemented MRAC using the motion planner as

the reference generator, and a tracking-error based gradient-

descent for the adjustment mechanism. The adjustment

mechanism was derived by Lyapunov analysis and resulted in

an effective controller of the form shown in (2).

𝑢 = 𝐾𝑒 + 𝑌 ∫(𝑌𝑇𝐾𝑔𝑒)𝑑𝑡 (2)

In this controller, u is the wrench consisting of the force and

torque that should be applied to the ASV, K and Kg are the PD

and learning rate gains respectively, and e is the state error. Y

is the regression matrix for Fossen's marine surface-craft

dynamics; it is the state-space model expressed as a linear

operation on the unknown parameters. It is interesting to note

that traditional PID is an MRAC architecture but with Y being

the identity matrix.

MRAC works very well on the ASV, bringing steady-state

error to negligible amounts in all cases without introducing

oscillations. Additionally, it does not wind-up as much as an

ordinary integrator when unexpected disturbances are applied,

such as humans pushing the ASV, since it is trying to adapt

specifically to drag and inertial effects instead of constant

external forces.

Finally, with the controller outputting desired wrenches, the

last operation needed is to map that wrench to a thrust

command for each thruster. A surface vehicle would only need

three thrusters to be holonomic, but with four, the ASV is

more fault tolerant. This redundancy in the mapping can be

solved as a regularized least-squares problem by evaluating a

pseudoinverse [7].

4) Navigation and Odometry: The NaviGator ASV uses a

student-developed Sylphase global positioning system (GPS)

and inertial navigation system (INS) that is in the process of

being commercialized by Forrest Voight, a UF student and

member of Team NaviGator AMS. It primarily consists of a

circuit board with a Spartan-6 field programmable gate array

(FPGA), radio frequency (RF) frontend, inertial measurement

unit (IMU), magnetometer, and a barometer. The FPGA

performs the correlation operations that enable tracking of

GPS satellites. All the sensor measurements and correlations

are passed to a computer via USB, into a pipeline of software

modules that track and decode the signals from the GPS

satellites and then fuse measurements using an extended

Kalman filter into an estimate of the ASV's pose in both

absolute world and relative odometry coordinate frames. Last,

the resulting odometry is transformed so that it describes the

ASV's coordinate frame and it is then passed to ROS.

By using the sensors to aid the GPS solution and taking

advantage of GPS carrier phase measurements, extremely

precise relative odometry is possible, with noise on the order

of centimeters over periods of seconds to minutes. This is the

result of years of work, during which several iterations of the

hardware were produced. The initial version of the hardware

was a Beaglebone cape, but quickly moved to the USB/FPGA

approach for ease of development and reduced CPU load. The

current revision of the hardware is shown in Fig 9.

Fig 9. Current hardware revision of the Sylphase, a student-designed GPS/INS

5) Perception: In addition to the underwater camera, the

Team NaviGator AMS 7 of 11

Navigator ASV is equipped with three additional color

cameras, including a stereo pair. The stereo cameras face

forward while the third camera, used specifically in

conjunction with the racquetball launcher mechanism, faces

starboard. Previous testing with cameras oriented horizontally

demonstrated that much of the field of view was above the

horizon. As a result, the white-balancing done by the camera

drivers had a hard time dealing with the variability in lighting

conditions. The team found that if the cameras were tilted

down 15 degrees, it produced a better color consistency across

a spectrum of lighting conditions and a more usable field of

view.

The NaviGator ASV’s visual system has the capability of

generating depth images and point clouds using the stereo

cameras. The ASV can generate dense stereo point clouds

using a stereo processing ROS package which offers an

implementation of the Semi-Global Block Matching (SGBM)

algorithm. However, at the resolutions at which the ASV

operates, this algorithm consumes a substantial amount of

computing resources. Since the ASV has a Velodyne LIDAR

that provides excellent point clouds without any on-board

processing, it often operates with an inactive stereo point

cloud generation pipeline. The ASV also has the ability to

generate sparse stereo point clouds using image keypoints

with a negligible consumption of resources. This algorithm

relies on a modified version of the FAST detector and scans

across epipolar lines for potential matches in left and right

images [8]. Although it is very efficient, its biggest downfall is

that in outdoor environments with vast and repetitive texture

regions, the outlier rate is worse than that of the LIDAR.

6) State Machine: The state machine that is used in solving

the challenges uses a directed acyclic graph (DAG) to decide

which missions to complete at which time. Each mission is

first defined by three key attributes: the other missions that it

depends on, the objects that it depends on, and whether or not

the mission should be re-executed. For example, the Scan the

Code challenge does not depend on any other challenges, it

depends on the Scan the Code object being recognized after it

is executed, it should not be re-executed after it is completed.

The state machine is constantly listening for new objects to be

found. Once one is found, it goes to the parent missions in the

DAG and evaluates if they are ready to be completed. If one of

these missions is ready, it is executed. Once it is complete, the

DAG is reevaluated for more missions to be complete. This

continues until all missions are complete.

III. DESIGN STRATEGY

This section describes the various strategies that the

NaviGator ASV will employ for each of the challenges.

A. Find Totems and Avoid Obstacles

The Find Totems and Avoid Obstacles task requires that the

LQR-RRT* controller, the Occupancy Grid Server, and the

Classification Server are all working in tandem. The

Classification Server continuously runs in the background

attempting to classify bounding box instances that are

provided by the Occupancy Grid Server. For this challenge,

classified instances of totems are provided to the mission as

shown in Fig 10. A path that accounts for all obstacles

currently visible is planned, with an additional step of circling

the closest totem to the ASV. Since the order in which the

NaviGator ASV is supposed to circle each totem is provided,

the mission attempts to match this knowledge with what has

already been classified by the Classification Server. This

process is then repeated for each remaining totem visible on

the field. Due to the nature of the motion planner, obstacles

that come in and out of the frame of view are automatically

accounted for in the planned path, even in scenarios where an

obstacle may appear while circling one of the totems.

Fig 10. Classification Server detecting a blue totem for the Find Totems and

Avoid Obstacles challenge

B. Identify Symbols and Dock

The NaviGator ASV initializes this challenge by first

strafing alongside the docking bays, recording the shape and

color of the three symbols identified and storing them globally

for future use. The computer vision used in this challenge

underwent two major trial designs before the current design

was implemented. First, a color frame received from one of

Navigator ASV’s cameras was thresholded into three binary

image frames, each with its own hue thresholds intended to

create one frame for each of red, green, and blue symbols.

After a contour approximation, each contour underwent a

series of tests: calculating the number of sides in an

approximated polygon to the contour to help detect triangles

and cruciforms; the ratio of the contours’ perimeter and area

which will always be a constant ratio for perfect shapes; and

the internal angles between the sides of the contour. Despite

the use of the image’s hue saturation values (HSV), this

strategy did not prove effective given the varying lighting

conditions. The next progression, and the one implemented for

the competition, uses Canny edge detection on a grayscale

image and performs the same geometric tests. Once the shape

has been classified, the corresponding pixels in the color

image are used to determine the closest hue of red, green, or

blue. Another solution considered was one of OpenCV’s

feature detection algorithms, such as Speeded-Up Robust

Features (SURF). Unfortunately, such algorithms did not

perform well with the simple features present in the

Team NaviGator AMS 8 of 11

challenges’ symbols.

After the three symbols have been identified, a smooth

outline of the docking bays, approximated from the occupancy

grid, provides the mission with the location of the center of the

three bays. The program then queries the mission planner for

the correct symbols in which to dock, then moves to the bay

corresponding to the appropriate symbol while relying on

obstacle avoidance to not collide with the dock.

C. Scan the Code

The Scan the Code mission begins by first using the

Classification Server to classify the light buoy. The NaviGator

ASV then maneuvers to the light buoy in a way that places the

sun behind the ASV. For example, if it is 11:00 AM, the ASV

would drive to the east of the sign in order to get better color

readings. A bounding box of the image is then obtained using

back-projected LIDAR points. The ASV then runs a Canny

edge detector and edge analysis on the image. This edge

analysis involves finding vertical lines, and choosing a square

of interest to recognize the color based on the positions of

these lines. Finally, once the ASV successfully obtains the

sequence of colors using this method, they are reported to the

team-provided judge’s display.

D. Underwater Shape Identification

For completion of the Underwater Shape Identification task,

a PointGrey Firefly MV camera in an underwater housing is

used as the primary perception sensor. Using a 2.3 millimeter

lens, a 0.33 inch CCD sensor, and assuming an average water

depth of 4 meters, the camera is able to view an area of

approximately 8 x 5 meters under ideal conditions, when

observing from the surface of the water. For finding the

objects of interest, the LQR-RRT* path planner generates a

spiral search pattern that radiates outward from the center of

the provided quadrant. The search area is bounded by the

dimensions of the quadrant, in this case 40 x 40 meters. While

the ASV is executing the search pattern, the vision software is

looking for the given shape. The black rectangle is detected by

using Hough transforms to find intersecting lines. This in turn

provides a bounding area in which to find any of the given

shapes. The shapes are classified using Canny edge detection

and a host of geometric tests. This whole process is repeated

for the second desired quadrant and the results are posted to

the team-provided judge’s display.

E. Find the Break

Much like the Underwater Shape Identification challenge,

the same sensor system is used to count the number of breaks

in the search area. Geometric tests coupled with Canny edge

detection are used to identify the shapes. For each detected

marker, its pose relative to the NaviGator ASV is found by

using principal component analysis. This information is

tracked for all of the detected markers. The ones that mark the

start and end of the sequence and those which have to be

counted are denoted. Once this process is completed, the count

is reported to the team-provided judge’s display.

F. Detect and Deliver

NaviGator ASV begins this challenge by first identifying

the target platform using the Classification Server. Once

found, it begins a circular search pattern around the platform,

maintaining the shape perception camera pointed towards the

platform. The search ends when the target with the correct

shape and color are identified or the mission time runs out.

The same vision algorithm used to classify the shapes and

colors of the targets used in the Identify Symbols and Dock

challenge is used for this task. At this stage, the LIDAR is

used to approximate the normal from the target’s plane. The

ASV then moves a fixed distance from that plane, orienting

itself parallel in order to launch the racquetballs. The

Navigator ASV then switches to a station holding behavior,

keeping this orientation and distance to the target while it

launches each of the four racquetballs in sequence using a

simple timing based control of the racquetball launching

mechanism. An image of the ASV performing this task can be

seen in Fig 11.

Fig 11. The NaviGator ASV performing the Detect and Deliver task

G. Acoustic Pinger-based Transit

The team implemented an acoustic pinger locator using an

array of hydrophones and mathematical multilateration

techniques. The NaviGator ASV continuously records the

sound heard by each of the hydrophones onto a circular buffer.

When the amplitude of the sound crosses a threshold, it

transfers the contents of the buffer to the computer after a

predefined amount of time. Difference in time of arrival

(DTOA) measurements are made by taking the time offset

where there is a minimum in the running sum of absolute

differences between a reference signal and non-reference

signals.

From DTOA measurements, the NaviGator ASV is able to

calculate the heading to a pinger using the Bancroft algorithm

for multilateration [9]. However, the ASV’s motors produce

frequencies around 20 kHz that drown out the sound of the

pinger. Whenever the motors stall, the hydrophone array

receives accurate DTOA measurements, providing a heading

to the pinger. The equation of a line through the ASV’s

current position with the heading attained by the team’s

multilateration algorithm is archived any instant that the

motors are stalled and the ASV is within audible range of the

pinger. As the ASV drives around the course completing other

Team NaviGator AMS 9 of 11

missions, it will acquire more estimates of lines on which the

pinger lies. Whenever the ASV commands a locate-pinger

command, it calculates the least-squares solution to the system

of accumulating line equations. This solution is the best

estimate of where in the course a specific sound source lies.

Once the heading to the entry gate pinger is located, the

NaviGator ASV will align and maneuver through the gate with

the active pinger. Throughout the entire mission, the

Classification Server will be running concurrently with other

software in order to classify the gates and black tower buoy.

Once the ASV has successfully entered the correct gate, it will

locate and circle the black tower buoy. The ASV will then end

this challenge by locating the heading for the pinger associated

with the exit gate and then drive through it.

IV. EXPERIMENTAL RESULTS

This section discusses the simulated and physical testing

strategies that the team used to prepare for the competition.

A. Simulator

The Gazebo simulator was used to test code that required

inputs to change in response to its own output. While basic

perception code can be tested on a recorded video, code that

performs an action based on the perceived image requires the

image to change based on that movement. Gazebo was chosen

because it is well supported by ROS and has been used

successfully in past MIL projects. Gazebo enables data to be

generated based in a virtual environment and then published

on the same ROS nodes that it would be published to on the

physical hardware. In other words, this makes the process

totally transparent to the software and allows the same code to

be run in either the real or virtual world, with no modification.

This is an extremely valuable tool because it takes a

significant amount of time and effort to bring the NaviGator

ASV to a lake for field testing, whereas the simulator can be

launched in a single command at a workstation.

Due to the time constraints of the competition, the primary

objective was to build a virtual sandbox world that contained

each challenge in a pre-defined location. A basic virtual

environment was created with a sea floor plane and a water

surface plane above it. The mechanical systems team created

3D models of each field element that matched the

specifications in the challenge preliminary task descriptions

document. Textures were applied to the models and they were

placed into the virtual environment by defining their locations

in a sandbox launch file. This allowed each challenge to be

attempted, but the static state of the environment prevented

testing edge cases or even slight variations.

The secondary objective was to define the parameters of

each challenge, such as the success and failure conditions, and

randomly generate each challenge based on them. This allows

different positions, rotations, and combinations of shapes and

colors for the symbols to be created on the fly. After that, a

system that allowed multiple challenges to be generated at a

time was constructed. This basically came down to a packing

problem wherein the course challenges had size parameters

and all of the challenges had to be fit into the maximum

allowed area. The challenges also had to have proper

connections so that the mission system on NaviGator ASV

was able to use information from one challenge to complete

the next challenge. This enabled the simulator to generate a

possible course based on the preliminary competition rules

and verify that the ASV could successfully complete that

particular course scenario. A sample screenshot from the

simulator can be seen in Fig 12.

Fig 12. Simulated NaviGator ASV attempting the Identify Symbols and Dock

challenge; note the simulated LIDAR beams emitting from the ASV

B. Field Testing

In addition to testing in the simulator, NaviGator ASV

underwent significant lake testing. Over 130 hours of in-water

testing were carried out in the form of day-long tests in the

months leading up to the competition at a lake near UF. Lake

testing offered real-life environmental factors that simulation

cannot accurately provide, such as wind and current

disturbances, various lighting conditions, and inclement

weather.

Field testing also offered a chance to test the mechanical

systems of the ASV, such as actuators like the racquetball

launcher, the strength of team-manufactured components, and

the efficiency of the computer cooling system. The frequency

and duration of testing helped to expose hardware failures that

may have gone unnoticed until the competition. For example,

the original sensor mast placed the Ubiquiti omnidirectional

Wi-Fi antenna less than two inches away from the Velodyne

LIDAR. During field testing, the team found that the LIDAR

was returning noisy data. However, when testing in the lab,

the LIDAR data looked fine. Eventually the team determined

that the only difference was that a wired connection was used

to connect to the ASV while working in the lab, as opposed to

the Wi-Fi connection that was used while field testing. It turns

out that the Wi-Fi signal from the antenna was adding noise to

the LIDAR data. Moving the Wi-Fi antenna further from the

LIDAR solved the problem. This kind of issue would never

have arisen during simulation. The detection of this and other

flaws during testing prevented what would have been

catastrophic failures during the competition.

C. Field Element Construction

In order to take full advantage of the realistic testing

environment that the lake provides, field elements similar to

Team NaviGator AMS 10 of 11

those that will be used in the competition were constructed.

The field elements were designed to be simple in construction

and easy to deploy. Many of the elements were made of a

PVC pipe frame that allowed for modular construction and

easy assembly and disassembly. Buoyancy was provided by

foam sheets and pool noodles fitted around the PVC pipes.

The simplicity and light weight of the course elements allowed

for quick and easy setup and teardown of the course using

only a few team members in a kayak. As an example, the

Identify Symbols and Dock platform that the team constructed

and used for testing can be seen in Fig 13.

Fig 13. The Identify Symbols and Dock platform that was constructed to aid

in the field testing of NaviGator ASV

V. OUTREACH AND SUSTAINABILITY

The labs of Team NaviGator AMS have been providing

outreach to a number of Native American communities over

the past several years. The lab’s efforts were recognized at the

2015 RoboBoat Competition by being awarded the Outreach

Award as well as a check for $1000. This money was invested

into more outreach activities for Native American

communities. In particular, the majority of the money was

used to purchase supplies for a science, technology,

engineering, art, and mathematics (STEAM) camp for students

of the Citizen Potawatomi Nation (CPN) in Shawnee,

Oklahoma. Each day of the week-long camp, students learned

about a different element of STEAM under the context of an

overarching project that involved the evaluation of a historical

site that is of importance to the tribe, as shown in Fig 14. The

curriculum was developed and administered by the

community. The camp framed the different STEAM

disciplines as being something that have always been part of

the CPN’s culture. This was done in order to help the students

see the relevance of STEAM in their own lives so that they be

more willing to pursue STEAM related careers.

Members of the team have also been mentoring students

from local high school FIRST Robotics Competition teams for

over five years. They also helped convince the UF engineering

college to provide scholarships to all of the seniors on these

teams to encourage them to study engineering at UF. These

efforts have served two purposes; providing opportunities for

the next generation of students to learn about engineering as

well as addressing lab sustainability by providing a steady

stream of highly-qualified students to work in the robotics labs

at UF. This year the team had three incoming freshman work

on the NaviGator ASV who had been mentored by students in

MIL prior to attending UF. Although they are young, these

students have been some of the most productive members of

the team. They were put in charge of developing the software

and hardware to complete the Detect and Deliver Challenge.

They were able to complete this challenge so well, they were

also put in charge of the Identify Symbols and Dock

Challenge. The lab is excited to have these new students and

looks forward to seeing what they can accomplish in the

upcoming RoboBoat and RoboSub Competitions and beyond.

Fig 14. Potawatomi students working to evaluate a historical site while

learning about STEAM

VI. CONCLUSION

This paper presents the University of Florida’s autonomous

surface vehicle, NaviGator ASV, for use in the 2016 Maritime

RobotX Challenge. Sacrificing speed for maneuverability, the

vessel’s four thrusters give the ASV an additional degree of

freedom when compared to traditional skid-steer vessels. The

novel use of an automotive cargo box for housing electronics

created an open layout design that allowed for easy access and

rapid repairs. An iterative approach created a strong software

foundation that was exhaustively tested with over 130 hours of

in-water testing. Team NaviGator AMS is ready for the 2016

Maritime RobotX Challenge due to extensively tested

software, simple mechanical design, and robust electronics.

ACKNOWLEDGEMENT

Team NaviGator AMS would like to acknowledge everyone

who has supported the team throughout the year, including the

University of Florida’s Herbert Wertheim College of

Engineering, the Electrical and Computer Engineering

department, the Mechanical and Aerospace Engineering

department, as well as the labs of MIL and CIMAR. The team

would like to extend an appreciative thank you to their

advisers: Dr. Eric Schwartz, Dr. Carl Crane, Dr. Ira Hill, and

Shannon Ridgeway.

The latest Team NaviGator AMS developments can be

found at www.NaviGatorUF.org.

www.NaviGatorUF.org

Team NaviGator AMS 11 of 11

APPENDIX: SITUATION AWARENESS

The successful integration of any new technology requires

that the general public feels comfortable using it. Sometimes

companies quell initial skepticism with clever marketing.

However, what really allowed society to accept cars,

microwaves, washing machines, etc., was the spread of high-

level understanding. For example, the average person may not

know the intricacies of designing an engine, but the average

person does know that the engine burns gasoline to make

motion.

Even this kind of extremely basic conceptualization is

critical to trust, because users need to have an idea of what to

expect with the technology. If someone did not have the

slightest idea about what a car is, nothing would stop them

from wondering if this mysterious contraption might explode

as soon as they got into it. Right now, robots are facing this

type of skepticism; to many, they are mysterious contraptions.

With accessible high-level overviews, it is possible to get the

general public who already know that a car has tires, an

engine, and brakes, to know that an ASV has a range sensor, a

motion planner, and a state machine. Then something as basic

as lights indicating the ASV's decision state would give people

confidence in knowing what the robot will do.

However, robots that use machine learning can be

unpredictable, even for their programmers. For example, if a

robot's motion planner was learned, one can only hope that the

situation the robot is in fits well enough with the patterns it

extracted during training, such that it behaves as expected. For

a robot that utilizes machine learning, there may no longer be

a well-defined state machine that can be mapped to indicator

lights.

Fortunately, for machine learning and adaptive algorithms,

there is almost always a way to quantify confidence. For

example, classifier algorithms typically have some measure of

how strongly the input matches what the system already

understands, say with a discriminant value in supervised

learning or a clustering validation index in unsupervised

learning. For neural networks, one can use the

backpropagation error to generate a measure of confidence.

Even for state estimators like the Kalman Filter, one can take

the current state covariance as inversely proportional to some

measure of confidence. The list goes on and on. The team’s

idea is to make the robot's confidence in its own decisions

available to everyone around it. If the robot has low

confidence in a particular scenario, it will effectively display

the emotion of confusion, perhaps with a blinking indicator or

a sound. If everyone knows at all times how confident the

robot is in itself, i.e., a high confidence level in a situation that

the robot has seen many times before in training, then

everyone will know when they should be relaxed and when

they should have their hand on the kill-button.

On the NaviGator ASV, the team implemented a concurrent

learning (CL) controller as part of a research project for the

University of Florida’s Nonlinear Controls and Robotics lab.

This controller blends machine learning and control theory by

using a novel update law for batch linear regression that

allows for simultaneous system identification and Lyapunov-

stable control [10]. Unlike most adaptive controllers which are

Markovian, this algorithm uses a history stack of states and

efforts to enable actual convergence of system parameter

estimates. The ASV ran this algorithm under typical

conditions without bizarre disturbances to allow the

parameters to converge to nominal values. With those values

recorded, the team could then compute and view a measure of

how off-nominal the current parameter estimates were at any

given moment. If, for example, a thruster began

malfunctioning, the model would start to diverge from

nominal and a software alarm would be raised, alerting the

users.

REFERENCES

[1] A. Gray and E. Schwartz, “Anglerfish: An ASV controlled ROV,”
presented at the 29th Florida Conference on Recent Advances in

Robotics (FCRAR), Miami, FL, May 12-13, 2016.

[2] T. I. Fossen, in Handbook of Marine Craft Hydrodynamics and Motion
Control, John Wiley & Sons, 2011.

[3] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited

differential dynamic programming,” presented at the 2014 IEEE
International Conference on Robotics and Automation (ICRA),

Hong Kong, China, May 31-June 07, 2014.
[4] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path

planning,” TR 98-11, Computer Science Dept., Iowa State University.

[Online]. Available: http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf.
[5] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,

“LQR-RRT*: Optimal sampling-based motion planning with

automatically derived extension heuristics,” presented at the 2012 IEEE
International Conference on Robotics and Automation (ICRA), St. Paul,

MN, May 14-18, 2012.

[6] Wikipedia.org, “Adaptive control.” [Online]. Available:
https://en.wikipedia.org/wiki/Adaptive_control.

[7] University of California, Berkeley, “Regularized least-squares problem,”

from EECS Instructional and Electronics Support. [Online]. Available:

https://inst.eecs.berkeley.edu/~ee127a/book/login/l_ols_rls_def.html.

[8] K. Schauwecker, R. Klette, and A Zell. , “A new feature detector and

stereo matching method for accurate high-performance sparse stereo
matching,” presented at the 2012 IEEE/RSJ International Conference on

Robotics and Systems (IROS), Vilamoura-Algarve, Portugal, October 7-

11, 2012.
[9] M. Geyer and A. Daskalakis, “Solving passive multilateration equations

using Bancroft’s algorithm,” in Proc. Digital Avionics Systems

Conference, 1998, pp. F41-1–F41-8.
[10] Z. Bell, A. Parikh, J. Nezvadovitz, and W. Dixon, “Adaptive control of a

surface marine craft with parameter identification using integral

concurrent learning,” to be presented at the 2016 IEEE Conference on
Decision and Control (CDC), Las Vegas, NV, December 12-14, 2016.

https://inst.eecs.berkeley.edu/~ee127a/book/login/l_ols_rls_def.html

