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Abstract—NaviGator ASV is a fully autonomous surface 

vehicle (ASV) built to compete in the Association for Unmanned 

Vehicle Systems International (AUVSI) Foundation’s 2016 

Maritime RobotX Challenge in Oahu, Hawaii. The NaviGator 

ASV is part of a larger group of collaborative autonomous aerial, 

surface, and subsurface vehicles known as the NaviGator 

Autonomous Maritime System (AMS). This paper describes the 

NaviGator ASV’s structural design, propulsion, power system, 

electrical design, software infrastructure, outreach efforts, and 

approach to completing the challenges presented in the 2016 

Maritime RobotX Challenge. 

I. INTRODUCTION 

The University of Florida’s (UF) Team NaviGator AMS is a 

multidisciplinary group composed of undergraduate and 

graduate students from the departments of Electrical and 

Computer Engineering and Mechanical Engineering. This 

project is primarily sponsored by the Machine Intelligence 

Lab (MIL), which has nearly 20 years of experience in 

competing in the AUVSI Foundation’s robotics competitions, 

including numerous championships in the RoboSub and 

RoboBoat Competitions. Due to the larger scale of the 

Maritime RobotX Challenge, MIL has partnered with the 

Center for Intelligent Machines and Robotics (CIMAR), a lab 

that has competed in three DARPA challenges and has 

extensive experience with developing highly intelligent large-

scale autonomous vehicles. Between MIL’s experience in 

autonomous maritime systems design and CIMAR’s 

experience in software architecture design, Team NaviGator 

AMS feels that they have created a winning combination and 

look forward to competing in the Maritime RobotX Challenge. 

II. VEHICLE DESIGN 

This section of the paper will describe the hardware and 

software that was developed for this competition, as well as 

the motivations behind these choices. This will include 

descriptions of early iterations of hardware and software that 

may have failed, what was learned in that process, and how 

that knowledge was integrated to improve on the designs. 

A. Mechanical Systems 

The mechanical platform used for the NaviGator ASV is a 

modified WAM-V research vessel developed by Marine 

Advanced Research. Several of the mechanical modifications 

that the team has made will be detailed in this section. A 

computer-aided design (CAD) render of the NaviGator ASV is 

shown in Fig 1. 

1) Propulsion: NaviGator ASV’s propulsion system began 

as two forward-facing stern thrusters, providing the ASV with 

a skid-steer configuration. After a short time of testing, it 

became apparent that adding more thrusters and mounting 

them at an angle would simplify the vectoring of the thrust to 

achieve a desired motion, as well as adding the capability of 

lateral motion. The current configuration features two bow and 

two stern thrusters oriented at a fixed 45 degrees. This is a 

thruster configuration that the team used in the 2013 

RoboBoat Competition with much success, earning first place. 

In addition to improved maneuverability, using four thrusters 

provides redundancy in the system, allowing the ASV to still 

have maneuverability even if either both bow thrusters or both 

stern thrusters fail. This feature was invaluable when a motor 

driver died minutes before a qualification run in the 2013 

RoboBoat Competition. With a quick modification to the 

thruster mapper program, the ASV was able to operate with 

just three thrusters, saving the run. The major disadvantage of 

this configuration is that the fixed angles of the thrusters 

means that it is not particularly efficient moving in any 

direction. However, for the tasks that the Navigator ASV is 

designed to perform, maneuverability is significantly more 

important than efficiency. 

 

 

Fig 1. CAD render of the NaviGator ASV 

 

Mounting the thrusters posed many challenges and required 

several design iterations, especially for the bow thrusters. For 

the ASV to be deployed from a trailer, the bow thrusters had 

to be either removed or raised during deployment so they 

would not collide with the trailer structure. The transom 

clamps on the trolling motors accommodated this function. 3D 

printed polycarbonate clamping blocks that interfaced with the 
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clamps on the trolling motors kept them fixed in place. While 

the mounts held the motors securely, the 3D printed parts 

began to crack and eventually failed. To solve this issue, the 

clamping blocks were machined from aluminum. 

2) Sensor Mast: The need for a stable sensor platform is 

paramount in machine vision applications. The preliminary 

design utilized an 80/20 aluminum rail truss, which did not 

provide the required stiffness and resulted in smearing of the 

vessel’s detection data. The initial sensor platform also did not 

raise the LIDAR system high enough to permit detection of 

obstacles in immediate proximity to the pontoons, a problem 

rectified in the final design. 

As previously mentioned, the cameras, LIDAR, and GPS 

antenna require a rigid support. The need for an unobstructed 

GPS antenna guided the design towards a mast structure. For 

transport to the competition site, the assembly had to fit within 

the prescribed envelope of a Pelican Products transport case, 

requiring a modular assembly process. These target 

specifications led to a base-and-tree assembly, where the mast 

is simply welded to a plate that then fastens to the payload tray 

via a superstructure. For corrosion resistance and 

manufacturability, 6063 aluminum was chosen. To simplify 

the assembly process, fastener types were standardized. The 

mast is centered laterally on the ASV, which helps create a 

well-defined coordinate system that permits simpler software 

transformations. The sensor mast can be seen in Fig 2. 

 

 

Fig 2. The NaviGator ASV’s sensor mast 

3) Electronics Box: NaviGator ASV’s electronics are 

housed in a Thule Sidekick cargo box. The team originally 

considered commercial waterproof boxes, but began looking 

for other options due to their high costs. One student 

suggested the idea of using a cargo box after being inspired by 

family road trips they had taken when they were younger. 

While traditionally used to mount on the top of cars to provide 

additional storage, the cargo box was an ideal electronics 

enclosure due to its watertight integrity, aerodynamic form 

factor, low cost, and a side-opening mechanism that makes it 

very easy to access all of the electronic components. 

The box’s watertight integrity prevented the team from 

using air circulation for cooling. Instead, a combination of 

techniques are used to cool the box. First, an adhesive 

reflective covering was applied to the lid of the box to reflect 

heat generated by solar radiation. Second, the box has an 

active water cooling system that is used to remove the heat 

generated from the electronic components inside the box. 

Fiberglass inserts were used to mount all of the components 

inside of the box. These inserts add rigidity to the relatively 

flimsy box and make it easy to add or remove components 

from the box. The components that need to be frequently 

removed, e.g., the hard drives, are attached to the fiberglass 

with Velcro. The rest of the components are attached with 

traditional fasteners. 

4) Racquetball Launcher: A system for delivering the 

racquetballs into the target for the Detect and Deliver task was 

developed by breaking the challenge into subtasks that were 

solved independently. The two main subtasks that were 

considered were moving the balls into the target and feeding 

the balls to the mover. Several ideas for moving the balls were 

considered, ranging from a catapult to a robotic arm that 

would drop the balls into the target. Prototypes of several 

designs were built and tested. One design featured two 

counter-rotating wheels attached to the trolling motors that 

were once part of PropaGator 1, the team’s submission to the 

2013 RoboBoat Competition. The trolling motors were 

originally used as part of an early prototype, but since they 

were already waterproof, were effective at launching the balls 

consistently, and were readily available, the trolling motors 

were incorporated into the final design. 

The ball launching mechanism was designed so that any 

type of ball feeder could be integrated into it. This allowed the 

team to test multiple types of ball feeder mechanisms, 

including a carousel and a linear actuator. A prototype of the 

linear actuator racquetball launcher can be seen in Fig 3. After 

the carousel mechanism was found to be prone to jamming, 

the linear actuator design was selected. Additional design 

criteria that were considered were the ease of loading balls and 

how quickly all four balls could be launched. Ball loading was 

addressed by designing a spring-loaded 3D printed ball 

magazine that is easily detachable. To achieve rapid-fire, the 

team developed a closed-bolt system. After a ball is loaded 

into the chamber, it is withheld at the minimum distance from 

the wheels to reduce the amount of time it takes to fire. In 

order to prevent premature firing, a retention lip is used. 

 

 

Fig 3. Prototype of the linear actuator racquetball launcher 
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5) Anglerfish: The Anglerfish is a remotely operated vehicle 

(ROV) designed to assist NaviGator ASV in completing the 

Underwater Shape Identification and the Find the Break 

challenges. Anglerfish [1], shown in Fig 4, is designed to be 

controlled by the NaviGator ASV via a 30 meter tether that 

provides both power and two-way communication to the 

ROV. The tether is also strong enough to be used as a method 

to recover the submersible. 

 

 

Fig 4. The Anglerfish ROV, a student-designed vessel created to assist the 

NaviGator ASV in the Maritime RobotX Challenge 

 

The preliminary tasks descriptions of the competition stated 

that there would be a denied area above the Find the Break 

challenge. In this challenge, Anglerfish would be deployed 

from NaviGator ASV using a spool system. Once in the water, 

Anglerfish would descend to a pre-defined depth. Next, it 

would use a camera to search for the objects on the bottom of 

competition field. Once an object was found, it would report 

the object type and the object’s position in order to complete 

the challenge. However, the latest version of the rules 

removed the denied area. This change on the constraints of the 

challenge opened the door for much simpler solutions, making 

Anglerfish obsolete. 

6) Camera Deployment System: Once the denied area 

restriction was lifted for the Find the Break challenge, the 

team decided to use a simpler method to solve this task that 

did not include the use of Anglerfish. The solution that was 

developed is a deployable underwater camera that is able to 

observe the bottom of the course. This mechanism consists of 

a rigid beam that extends vertically into the water that is 

attached to the support beam between the pontoons of the 

NaviGator ASV. It is also possible to manually store and 

deploy the camera through a simple bolt system. 

B. Electrical Systems 

Robustness and simplicity were the primary motivating 

factors behind the design of the NaviGator ASV’s electrical 

system. The team focused on these aspects in order to get a 

testable system built quickly and minimize any downtime due 

to electrical failure. 

1) Power System: The salient features of the power system 

are the dual battery power supply and the power merge board. 

The NaviGator ASV’s power requirements surpassed those of 

MIL’s other projects in both the amount of power and required 

power source durability. Solving these challenges required 

looking outside the typical battery suppliers MIL used in the 

past. To be able to supply adequate power to four thrusters, 

computers, sensors, and communication hardware, the ASV 

uses two Torqueedo Power 26-104 batteries. Each battery 

powers two of the thrusters and contributes to the power rail 

that powers all other devices on the NaviGator ASV. 

2) Student-designed Electronics: 

a) Power merge board: The power merge board is a 

student-designed printed circuit board assembly (PCBA). It 

uses two Texas Instruments LM5050 High Side OR-ing FET 

controllers as ideal diode rectifiers to balance and parallel the 

two batteries into one rail that supplies four output ports. This 

makes the system more fault tolerant to a failing battery, a 

feature used in normal operation to switch batteries out 

without turning the system off. One of the strengths of MIL is 

the ability to design hardware and software that can be reused 

on other projects and vehicles. This is the third vehicle for 

which this board design has been utilized. The design was 

originally created for PropaGator 1 and then used on 

PropaGator 2, both of which have competed in the RoboBoat 

Competition. 

b) Passive sonar: The passive sonar is a student-designed 

PCBA that implements a signal conditioner with for four 

Reson hydrophones. The timing information from the 

hydrophones is put in a buffer and sent to the computer for 

processing. The hydrophone PCBA design has proven to be 

extremely versatile in that NaviGator ASV will be the sixth 

autonomous vehicle from MIL to use this passive sonar design 

in an AUVSI Foundation competition. 

c) Kill system: The hardware kill system consists of two 

student-designed PCBAs and four off-the-shelf twist to detent 

kill switches. The kill system for the vehicle also has a 

software component. The kill board monitors the status of six 

kill sources. When any of the six sources request a kill, the kill 

board cuts power to the thruster motor controllers. The six kill 

sources are the four off-the-shelf switches that are mounted 

around the vehicle, a remote kill switch, and the computer. 

The remote kill switch operates over a 900 MHz radio link and 

displays the hardware kill status of the vehicle. The kill board 

is also used to control the NaviGator ASV’s indicator lights 

and a siren used to ward off curious watercraft during testing. 

C. Software Systems 

The NaviGator ASV utilizes an open source software 

environment known as the Robot Operating System (ROS). 

The team has been using ROS for their entries to the 

RoboBoat and RoboSub Competitions since 2012 and the 

students in the lab are active contributors to the ROS 

community. ROS was chosen as the programming architecture 

for NaviGator ASV because it compartmentalizes specific 

pieces of executable code into nodes. This allows the team to 

use software that was developed in previous competitions to 

be used on the NaviGator ASV, greatly reducing development 
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time. For example, much of the stereo vision software that is 

used on the ASV, was ported directly from code that was 

developed last year on SubjuGator 8, the lab’s latest entry for 

the RoboSub Competition. 

1) Object Detection and Classification: The lowest level 

perception service available on the NaviGator ASV is the 

Occupancy Grid Server. Occupancy grids are a two-

dimensional grid-like representation of the environment 

generated by the sensor suite available on the ASV. The 

generated map contains both the occupied and unoccupied 

regions in the environment. This information is provided to 

the server via any range-detecting sensor onboard. On the 

ASV, the primary range-detecting sensor is a Velodyne VLP-

16 LIDAR. A LIDAR uses lasers to provide relatively dense 

range information of the environment. This information is then 

segmented by regions containing dense clusters of relatively 

close points. These bounding regions are treated as obstacles, 

and are placed in the occupancy grid. This information is then 

provided to higher level services such as the motion planner 

and Classification Server. 

In the Classification Server, the points generated by the 

LIDAR are clustered into regions on the occupancy grid where 

it decides which of these distinct regions are objects. The ASV 

then looks at the bounding box of this object and classifies the 

object based on the dimensions of its bounding box. The 

software detects if the object has a prominent plane. If it does, 

then this information is attached to the object. These objects 

are then accessible to other programs through the use of a list 

of detected objects. 

2) Motion Planning: Motion planning is the process of 

finding a sequence of inputs that bring a given system from its 

initial state to a goal state. In most cases, there are an infinite 

number of ways for the same goal to be achieved. Ambiguity 

among these solutions can be reduced in a useful way by 

adding two more criteria to the problem statement; optimality 

and constraints. 

Typically, optimality is characterized by a scalar function 

that assigns a cost to every possible state-input pair. Optimal 

solutions are the ones which also have the smallest total cost. 

Constraints are characterized by a binary function which 

classifies every possible state-input pair as either being 

allowable or forbidden. Allowable solutions are the ones 

which are allowable at every step. 

For the NaviGator ASV, a goal state is defined as the 

desired GPS waypoint and vehicle heading with zero linear 

and angular velocity. Succinctly, achieving a goal means 

coming to rest at some new desired pose. An allowable plan is 

abstractly defined as one that does not collide with another 

object, and an optimal plan is defined as one which finishes in 

minimal time. The exact way these criteria are mathematically 

formulated depends on the motion planning algorithm being 

used. Like any planner, it is necessary to define the dynamics 

by which the ASV's state evolves with time. 

The spin speeds of the ASV’s thrusters can be varied fast 

enough to be treated as the inputs to the physical system. The 

thrusters apply forces to the ASV, so that control is said to be 

at the acceleration-level, i.e., the ASV’s position as well as 

linear and angular velocities must be included in its state 

vector. The model for the vehicle was determined using the 

marine surface-craft dynamics provided in [2]. 

The dynamics of this model include the inertial effects of 

both the ASV and the water it pushes with it, as well as a 

quadratic hydrodynamic drag model. Parameter values for the 

ASV were first approximated by applying known forces to the 

system and trying to match simulated velocities to actual 

velocities. The results of this parameter-tuning were later 

refined with rigorous system identification methods. 

Regardless, some model uncertainty is acceptable due to 

feedback in the control architecture, which will be explained 

in detail in the Motion Control section of this paper. 

To solve the now defined planning problem, first the team 

implemented the popular differential dynamic programming 

(DDP) algorithm given in [3]. DDP does not directly invoke 

an allowable-or-forbidden function for hard constraints. 

Rather, obstacles have to be encoded in the cost function itself 

as areas of high cost. DDP starts with a guess at the optimal 

sequence of inputs, performs a forward-pass where it 

simulates the dynamics over that sequence of inputs, and then 

performs a backward-pass where it recursively perturbs each 

input value according to the local cost of its associated state.  

Each local cost region is approximated as a quadratic, so 

essentially the algorithm is an iterative linear quadratic 

regulator (LQR) solver for an arbitrary global cost function. 

However, the cost function still needs to be twice 

differentiable, a restriction that led to some inadequacies. An 

example of each iteration of DDP being used to navigate a 

buoy field can be seen in Fig 5. It should be noted that what is 

shown is only the 2D positional cross-section of the full cost 

field, which is really defined on the full 6D state-space. 

 

 

Fig 5. An example of each iteration of the DDP algorithm used for navigating 

a buoy field 
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Obstacles cannot be represented in the DDP cost function as 

steep, well-defined spikes or walls of cost. They have to be 

smooth enough to allow for stable numerical differentiation. 

For example, the buoy field cost function is defined in (1). 

𝑙 = 𝑒𝑇𝑄𝑒 +  𝑢𝑇𝑅𝑢 +  ∑ (
𝐴𝑖

2
(cos (

𝜋𝑑𝑖

𝑟𝑖
) + 1) 𝑤(𝑟𝑖))𝑁

𝑖=1   (1) 

In this cost function, e is the vector from the current state to 

the goal state, u is the control input vector, di is the distance 

from the current state's position to the ith buoy center, ri is the 

buoy's radius, w(*) is a 2D windowing function, N is the 

number of buoys, and Q, R, and Ai are weights on goal error, 

effort, and buoy nearness respectively. 

By representing each obstacle as a cosine hump 

superimposed on a quadratic bowl centered on the goal state, 

convergence to the optimal solution was numerically stable. 

However, whether or not the plan truly collided with a buoy, 

i.e., by crossing too close into a fuzzy boundary, depended 

strongly on proper tuning of Ai. Fundamentally, the DDP 

solver guarantees local optimality but requires a very well-

advised cost function to guarantee plans that do not actually 

collide. Another problem is its lack of flexibility. For example, 

a special new cost term has to be conjured up for each shape 

of obstacle that is expected to be encountered. 

For a safer and more flexible planner, the team sought out 

an algorithm that can handle strict, well-defined constraints. 

The rapidly-exploring random tree (RRT) algorithm is highly 

efficient for this scenario [4]. The algorithm starts with a seed 

node at the ASV’s initial state. It then randomly samples a 

state in the region of navigational interest. A nearness function 

is applied to every node currently in the tree, and then that 

node is extended or steered towards the random state 

following a policy function. The endpoint of that extension is 

added as a new node to the tree only if it is allowable, and the 

algorithm repeats. If an extension, or any intermediate state 

leading up to it, is not allowable, that iteration is simply 

abandoned. Once a node reaches the goal region, the tree is 

efficiently climbed from the goal back to the seed, and is 

classified as one solution to the planning problem. The best of 

the found solutions is defined as the one that takes the least 

amount of time. The goal region is likely to be reached 

because one can bias tree-growth towards it by shaping the 

probability density function from which random states are 

sampled. 

Since every portion of the tree is only retained if it is 

allowable, all paths generated are guaranteed to obey every 

hard constraint. Additionally, constraints like obstacles can be 

easily encoded as an occupancy-grid look-up table inside the 

allowable-or-forbidden function. Most RRT implementations 

differ in what they do for the nearness and steer functions. The 

team primarily used the popular LQR-RRT* methods given in 

[5]. An example of the NaviGator ASV’s RRT planning 

towards a goal region is shown in Fig 6. Obstacles are 

expressed as exact forbidden regions for which no portion of 

the ASV can enter. The tree only contains these allowable 

states, so safety is guaranteed. However, as randomness is 

intrinsic to the planner, it is only probabilistically optimal. 

 

 

Fig 6. An example of the NaviGator ASV’s RRT planning towards a goal 

region 

 

After selecting the RRT algorithm for safety and flexibility, 

the final step was to integrate the algorithm with a real-time 

system. One of the biggest difficulties in doing this was 

dealing with a highly nonstatic environment. Obstacles 

spontaneously appear when they get in range of the perception 

system. This means that a valid path can suddenly become 

invalid with only seconds to spare. To make efficient use of 

time, the planner should always be planning the next move so 

that the RRT has more time to get a better solution. To handle 

this, the planner had to be made asynchronously interruptible, 

and a lot of plan-reevaluation and crisis-aversion logic had to 

be built in to elegantly deal with spontaneously appearing 

and/or moving obstacles that cross the ASV’s current path.  

The ASV’s real-time ROS-integrated RRT algorithm being 

run for an arbitrarily drawn, complicated occupancy grid can 

be seen in Fig 7. Tree nodes can be seen in blue. The ASV 

was only given one second to plan its first move. It used its 

time during the first move to plan its second move, shown in 

red. While the paths generated using this method are safe and 

useful for solving the problem of navigation in the 

competition, the team is actively working on improved 

heuristics for smoothing out the paths. 

 

 

Fig 7. The NaviGator ASV’s real-time ROS-integrated RRT algorithm being 

run on an arbitrarily drawn, complicated occupancy grid 

3) Motion Control: Since the RRT motion planner uses a 

model of the ASV, in principle it would be possible to employ 
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a model-predictive control architecture in which the ASV 

rapidly re-plans from its current state to steer it back onto the 

desired path. However, due to the randomness inherent to the 

RRT itself, such a method did not work well in practice. Thus, 

the team opted to make use of the sequence of states generated 

by the motion planner rather than the inputs to define the 

reference a feedback controller tracks. 

First, a simple manually-tuned full-state feedback PD 

controller was used. Tracking along straight paths was nearly 

perfect with this alone, providing a positional steady-state 

error of less than 0.25 meters. However, along curves, a larger 

positional steady-state error of a few meters would always 

emerge depending on the curvature. Even the introduction of a 

standard integral term did not fix this problem. 

The team figured that this was because an integral of the 

world-frame error alone would only be able to compensate for 

disturbances that are constant in the world-frame. Simulation 

revealed that the sources of the curved motion disturbances 

were centripetal-Coriolis effects and heading-dependent drag 

forces. A more intelligent integrator would be necessary to 

compensate for these state-dependent disturbances. Most 

marine and aerial systems accomplish this by using a model-

reference adaptive control (MRAC) architecture. A block 

diagram of the MRAC controller used for the ASV is shown in 

Fig 8. In this diagram, yref is the current state in the sequence 

generated by the motion planner, u is the control effort choice, 

and y is the actual state. 

 

 

Fig 8. Block diagram of the MRAC controller used on the NaviGator ASV [6] 

 

The team implemented MRAC using the motion planner as 

the reference generator, and a tracking-error based gradient-

descent for the adjustment mechanism. The adjustment 

mechanism was derived by Lyapunov analysis and resulted in 

an effective controller of the form shown in (2). 

𝑢 = 𝐾𝑒 + 𝑌 ∫(𝑌𝑇𝐾𝑔𝑒)𝑑𝑡                       (2) 

In this controller, u is the wrench consisting of the force and 

torque that should be applied to the ASV, K and Kg are the PD 

and learning rate gains respectively, and e is the state error. Y 

is the regression matrix for Fossen's marine surface-craft 

dynamics; it is the state-space model expressed as a linear 

operation on the unknown parameters. It is interesting to note 

that traditional PID is an MRAC architecture but with Y being 

the identity matrix. 

MRAC works very well on the ASV, bringing steady-state 

error to negligible amounts in all cases without introducing 

oscillations. Additionally, it does not wind-up as much as an 

ordinary integrator when unexpected disturbances are applied, 

such as humans pushing the ASV, since it is trying to adapt 

specifically to drag and inertial effects instead of constant 

external forces. 

Finally, with the controller outputting desired wrenches, the 

last operation needed is to map that wrench to a thrust 

command for each thruster. A surface vehicle would only need 

three thrusters to be holonomic, but with four, the ASV is 

more fault tolerant. This redundancy in the mapping can be 

solved as a regularized least-squares problem by evaluating a 

pseudoinverse [7]. 

4) Navigation and Odometry: The NaviGator ASV uses a 

student-developed Sylphase global positioning system (GPS) 

and inertial navigation system (INS) that is in the process of 

being commercialized by Forrest Voight, a UF student and 

member of Team NaviGator AMS. It primarily consists of a 

circuit board with a Spartan-6 field programmable gate array 

(FPGA), radio frequency (RF) frontend, inertial measurement 

unit (IMU), magnetometer, and a barometer. The FPGA 

performs the correlation operations that enable tracking of 

GPS satellites. All the sensor measurements and correlations 

are passed to a computer via USB, into a pipeline of software 

modules that track and decode the signals from the GPS 

satellites and then fuse measurements using an extended 

Kalman filter into an estimate of the ASV's pose in both 

absolute world and relative odometry coordinate frames. Last, 

the resulting odometry is transformed so that it describes the 

ASV's coordinate frame and it is then passed to ROS. 

By using the sensors to aid the GPS solution and taking 

advantage of GPS carrier phase measurements, extremely 

precise relative odometry is possible, with noise on the order 

of centimeters over periods of seconds to minutes. This is the 

result of years of work, during which several iterations of the 

hardware were produced. The initial version of the hardware 

was a Beaglebone cape, but quickly moved to the USB/FPGA 

approach for ease of development and reduced CPU load. The 

current revision of the hardware is shown in Fig 9. 

 

 

Fig 9. Current hardware revision of the Sylphase, a student-designed GPS/INS 

5) Perception: In addition to the underwater camera, the 
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Navigator ASV is equipped with three additional color 

cameras, including a stereo pair. The stereo cameras face 

forward while the third camera, used specifically in 

conjunction with the racquetball launcher mechanism, faces 

starboard. Previous testing with cameras oriented horizontally 

demonstrated that much of the field of view was above the 

horizon. As a result, the white-balancing done by the camera 

drivers had a hard time dealing with the variability in lighting 

conditions. The team found that if the cameras were tilted 

down 15 degrees, it produced a better color consistency across 

a spectrum of lighting conditions and a more usable field of 

view. 

The NaviGator ASV’s visual system has the capability of 

generating depth images and point clouds using the stereo 

cameras. The ASV can generate dense stereo point clouds 

using a stereo processing ROS package which offers an 

implementation of the Semi-Global Block Matching (SGBM) 

algorithm. However, at the resolutions at which the ASV 

operates, this algorithm consumes a substantial amount of 

computing resources. Since the ASV has a Velodyne LIDAR 

that provides excellent point clouds without any on-board 

processing, it often operates with an inactive stereo point 

cloud generation pipeline. The ASV also has the ability to 

generate sparse stereo point clouds using image keypoints 

with a negligible consumption of resources. This algorithm 

relies on a modified version of the FAST detector and scans 

across epipolar lines for potential matches in left and right 

images [8]. Although it is very efficient, its biggest downfall is 

that in outdoor environments with vast and repetitive texture 

regions, the outlier rate is worse than that of the LIDAR. 

6) State Machine: The state machine that is used in solving 

the challenges uses a directed acyclic graph (DAG) to decide 

which missions to complete at which time. Each mission is 

first defined by three key attributes: the other missions that it 

depends on, the objects that it depends on, and whether or not 

the mission should be re-executed. For example, the Scan the 

Code challenge does not depend on any other challenges, it 

depends on the Scan the Code object being recognized after it 

is executed, it should not be re-executed after it is completed. 

The state machine is constantly listening for new objects to be 

found. Once one is found, it goes to the parent missions in the 

DAG and evaluates if they are ready to be completed. If one of 

these missions is ready, it is executed. Once it is complete, the 

DAG is reevaluated for more missions to be complete. This 

continues until all missions are complete. 

III. DESIGN STRATEGY 

This section describes the various strategies that the 

NaviGator ASV will employ for each of the challenges. 

A. Find Totems and Avoid Obstacles 

The Find Totems and Avoid Obstacles task requires that the 

LQR-RRT* controller, the Occupancy Grid Server, and the 

Classification Server are all working in tandem. The 

Classification Server continuously runs in the background 

attempting to classify bounding box instances that are 

provided by the Occupancy Grid Server. For this challenge, 

classified instances of totems are provided to the mission as 

shown in Fig 10. A path that accounts for all obstacles 

currently visible is planned, with an additional step of circling 

the closest totem to the ASV. Since the order in which the 

NaviGator ASV is supposed to circle each totem is provided, 

the mission attempts to match this knowledge with what has 

already been classified by the Classification Server. This 

process is then repeated for each remaining totem visible on 

the field. Due to the nature of the motion planner, obstacles 

that come in and out of the frame of view are automatically 

accounted for in the planned path, even in scenarios where an 

obstacle may appear while circling one of the totems. 

 

 

Fig 10. Classification Server detecting a blue totem for the Find Totems and 

Avoid Obstacles challenge 

B. Identify Symbols and Dock 

The NaviGator ASV initializes this challenge by first 

strafing alongside the docking bays, recording the shape and 

color of the three symbols identified and storing them globally 

for future use. The computer vision used in this challenge 

underwent two major trial designs before the current design 

was implemented. First, a color frame received from one of 

Navigator ASV’s cameras was thresholded into three binary 

image frames, each with its own hue thresholds intended to 

create one frame for each of red, green, and blue symbols. 

After a contour approximation, each contour underwent a 

series of tests: calculating the number of sides in an 

approximated polygon to the contour to help detect triangles 

and cruciforms; the ratio of the contours’ perimeter and area 

which will always be a constant ratio for perfect shapes; and 

the internal angles between the sides of the contour. Despite 

the use of the image’s hue saturation values (HSV), this 

strategy did not prove effective given the varying lighting 

conditions. The next progression, and the one implemented for 

the competition, uses Canny edge detection on a grayscale 

image and performs the same geometric tests. Once the shape 

has been classified, the corresponding pixels in the color 

image are used to determine the closest hue of red, green, or 

blue. Another solution considered was one of OpenCV’s 

feature detection algorithms, such as Speeded-Up Robust 

Features (SURF). Unfortunately, such algorithms did not 

perform well with the simple features present in the 
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challenges’ symbols. 

After the three symbols have been identified, a smooth 

outline of the docking bays, approximated from the occupancy 

grid, provides the mission with the location of the center of the 

three bays. The program then queries the mission planner for 

the correct symbols in which to dock, then moves to the bay 

corresponding to the appropriate symbol while relying on 

obstacle avoidance to not collide with the dock. 

C. Scan the Code 

The Scan the Code mission begins by first using the 

Classification Server to classify the light buoy. The NaviGator 

ASV then maneuvers to the light buoy in a way that places the 

sun behind the ASV. For example, if it is 11:00 AM, the ASV 

would drive to the east of the sign in order to get better color 

readings. A bounding box of the image is then obtained using 

back-projected LIDAR points. The ASV then runs a Canny 

edge detector and edge analysis on the image. This edge 

analysis involves finding vertical lines, and choosing a square 

of interest to recognize the color based on the positions of 

these lines. Finally, once the ASV successfully obtains the 

sequence of colors using this method, they are reported to the 

team-provided judge’s display. 

D. Underwater Shape Identification 

For completion of the Underwater Shape Identification task, 

a PointGrey Firefly MV camera in an underwater housing is 

used as the primary perception sensor. Using a 2.3 millimeter 

lens, a 0.33 inch CCD sensor, and assuming an average water 

depth of 4 meters, the camera is able to view an area of 

approximately 8 x 5 meters under ideal conditions, when 

observing from the surface of the water. For finding the 

objects of interest, the LQR-RRT* path planner generates a 

spiral search pattern that radiates outward from the center of 

the provided quadrant. The search area is bounded by the 

dimensions of the quadrant, in this case 40 x 40 meters. While 

the ASV is executing the search pattern, the vision software is 

looking for the given shape. The black rectangle is detected by 

using Hough transforms to find intersecting lines. This in turn 

provides a bounding area in which to find any of the given 

shapes. The shapes are classified using Canny edge detection 

and a host of geometric tests. This whole process is repeated 

for the second desired quadrant and the results are posted to 

the team-provided judge’s display. 

E. Find the Break 

Much like the Underwater Shape Identification challenge, 

the same sensor system is used to count the number of breaks 

in the search area. Geometric tests coupled with Canny edge 

detection are used to identify the shapes. For each detected 

marker, its pose relative to the NaviGator ASV is found by 

using principal component analysis. This information is 

tracked for all of the detected markers. The ones that mark the 

start and end of the sequence and those which have to be 

counted are denoted. Once this process is completed, the count 

is reported to the team-provided judge’s display. 

F. Detect and Deliver 

NaviGator ASV begins this challenge by first identifying 

the target platform using the Classification Server. Once 

found, it begins a circular search pattern around the platform, 

maintaining the shape perception camera pointed towards the 

platform. The search ends when the target with the correct 

shape and color are identified or the mission time runs out. 

The same vision algorithm used to classify the shapes and 

colors of the targets used in the Identify Symbols and Dock 

challenge is used for this task. At this stage, the LIDAR is 

used to approximate the normal from the target’s plane. The 

ASV then moves a fixed distance from that plane, orienting 

itself parallel in order to launch the racquetballs. The 

Navigator ASV then switches to a station holding behavior, 

keeping this orientation and distance to the target while it 

launches each of the four racquetballs in sequence using a 

simple timing based control of the racquetball launching 

mechanism. An image of the ASV performing this task can be 

seen in Fig 11. 

 

 

Fig 11. The NaviGator ASV performing the Detect and Deliver task 

G. Acoustic Pinger-based Transit 

The team implemented an acoustic pinger locator using an 

array of hydrophones and mathematical multilateration 

techniques. The NaviGator ASV continuously records the 

sound heard by each of the hydrophones onto a circular buffer. 

When the amplitude of the sound crosses a threshold, it 

transfers the contents of the buffer to the computer after a 

predefined amount of time. Difference in time of arrival 

(DTOA) measurements are made by taking the time offset 

where there is a minimum in the running sum of absolute 

differences between a reference signal and non-reference 

signals. 

From DTOA measurements, the NaviGator ASV is able to 

calculate the heading to a pinger using the Bancroft algorithm 

for multilateration [9]. However, the ASV’s motors produce 

frequencies around 20 kHz that drown out the sound of the 

pinger. Whenever the motors stall, the hydrophone array 

receives accurate DTOA measurements, providing a heading 

to the pinger. The equation of a line through the ASV’s 

current position with the heading attained by the team’s 

multilateration algorithm is archived any instant that the 

motors are stalled and the ASV is within audible range of the 

pinger. As the ASV drives around the course completing other 
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missions, it will acquire more estimates of lines on which the 

pinger lies. Whenever the ASV commands a locate-pinger 

command, it calculates the least-squares solution to the system 

of accumulating line equations. This solution is the best 

estimate of where in the course a specific sound source lies. 

Once the heading to the entry gate pinger is located, the 

NaviGator ASV will align and maneuver through the gate with 

the active pinger. Throughout the entire mission, the 

Classification Server will be running concurrently with other 

software in order to classify the gates and black tower buoy. 

Once the ASV has successfully entered the correct gate, it will 

locate and circle the black tower buoy. The ASV will then end 

this challenge by locating the heading for the pinger associated 

with the exit gate and then drive through it. 

IV. EXPERIMENTAL RESULTS 

This section discusses the simulated and physical testing 

strategies that the team used to prepare for the competition. 

A. Simulator 

The Gazebo simulator was used to test code that required 

inputs to change in response to its own output. While basic 

perception code can be tested on a recorded video, code that 

performs an action based on the perceived image requires the 

image to change based on that movement. Gazebo was chosen 

because it is well supported by ROS and has been used 

successfully in past MIL projects. Gazebo enables data to be 

generated based in a virtual environment and then published 

on the same ROS nodes that it would be published to on the 

physical hardware. In other words, this makes the process 

totally transparent to the software and allows the same code to 

be run in either the real or virtual world, with no modification. 

This is an extremely valuable tool because it takes a 

significant amount of time and effort to bring the NaviGator 

ASV to a lake for field testing, whereas the simulator can be 

launched in a single command at a workstation. 

Due to the time constraints of the competition, the primary 

objective was to build a virtual sandbox world that contained 

each challenge in a pre-defined location. A basic virtual 

environment was created with a sea floor plane and a water 

surface plane above it. The mechanical systems team created 

3D models of each field element that matched the 

specifications in the challenge preliminary task descriptions 

document. Textures were applied to the models and they were 

placed into the virtual environment by defining their locations 

in a sandbox launch file. This allowed each challenge to be 

attempted, but the static state of the environment prevented 

testing edge cases or even slight variations. 

The secondary objective was to define the parameters of 

each challenge, such as the success and failure conditions, and 

randomly generate each challenge based on them. This allows 

different positions, rotations, and combinations of shapes and 

colors for the symbols to be created on the fly. After that, a 

system that allowed multiple challenges to be generated at a 

time was constructed. This basically came down to a packing 

problem wherein the course challenges had size parameters 

and all of the challenges had to be fit into the maximum 

allowed area. The challenges also had to have proper 

connections so that the mission system on NaviGator ASV 

was able to use information from one challenge to complete 

the next challenge. This enabled the simulator to generate a 

possible course based on the preliminary competition rules 

and verify that the ASV could successfully complete that 

particular course scenario. A sample screenshot from the 

simulator can be seen in Fig 12. 

 

 

Fig 12. Simulated NaviGator ASV attempting the Identify Symbols and Dock 

challenge; note the simulated LIDAR beams emitting from the ASV 

B. Field Testing 

In addition to testing in the simulator, NaviGator ASV 

underwent significant lake testing. Over 130 hours of in-water 

testing were carried out in the form of day-long tests in the 

months leading up to the competition at a lake near UF. Lake 

testing offered real-life environmental factors that simulation 

cannot accurately provide, such as wind and current 

disturbances, various lighting conditions, and inclement 

weather. 

Field testing also offered a chance to test the mechanical 

systems of the ASV, such as actuators like the racquetball 

launcher, the strength of team-manufactured components, and 

the efficiency of the computer cooling system. The frequency 

and duration of testing helped to expose hardware failures that 

may have gone unnoticed until the competition. For example, 

the original sensor mast placed the Ubiquiti omnidirectional 

Wi-Fi antenna less than two inches away from the Velodyne 

LIDAR. During field testing, the team found that the LIDAR 

was returning noisy data. However, when testing in the lab, 

the LIDAR data looked fine. Eventually the team determined 

that the only difference was that a wired connection was used 

to connect to the ASV while working in the lab, as opposed to 

the Wi-Fi connection that was used while field testing. It turns 

out that the Wi-Fi signal from the antenna was adding noise to 

the LIDAR data. Moving the Wi-Fi antenna further from the 

LIDAR solved the problem. This kind of issue would never 

have arisen during simulation. The detection of this and other 

flaws during testing prevented what would have been 

catastrophic failures during the competition. 

C. Field Element Construction 

In order to take full advantage of the realistic testing 

environment that the lake provides, field elements similar to 
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those that will be used in the competition were constructed. 

The field elements were designed to be simple in construction 

and easy to deploy. Many of the elements were made of a 

PVC pipe frame that allowed for modular construction and 

easy assembly and disassembly. Buoyancy was provided by 

foam sheets and pool noodles fitted around the PVC pipes. 

The simplicity and light weight of the course elements allowed 

for quick and easy setup and teardown of the course using 

only a few team members in a kayak. As an example, the 

Identify Symbols and Dock platform that the team constructed 

and used for testing can be seen in Fig 13. 

 

 

Fig 13. The Identify Symbols and Dock platform that was constructed to aid 

in the field testing of NaviGator ASV 

V. OUTREACH AND SUSTAINABILITY 

The labs of Team NaviGator AMS have been providing 

outreach to a number of Native American communities over 

the past several years. The lab’s efforts were recognized at the 

2015 RoboBoat Competition by being awarded the Outreach 

Award as well as a check for $1000. This money was invested 

into more outreach activities for Native American 

communities. In particular, the majority of the money was 

used to purchase supplies for a science, technology, 

engineering, art, and mathematics (STEAM) camp for students 

of the Citizen Potawatomi Nation (CPN) in Shawnee, 

Oklahoma. Each day of the week-long camp, students learned 

about a different element of STEAM under the context of an 

overarching project that involved the evaluation of a historical 

site that is of importance to the tribe, as shown in Fig 14. The 

curriculum was developed and administered by the 

community. The camp framed the different STEAM 

disciplines as being something that have always been part of 

the CPN’s culture. This was done in order to help the students 

see the relevance of STEAM in their own lives so that they be 

more willing to pursue STEAM related careers. 

Members of the team have also been mentoring students 

from local high school FIRST Robotics Competition teams for 

over five years. They also helped convince the UF engineering 

college to provide scholarships to all of the seniors on these 

teams to encourage them to study engineering at UF. These 

efforts have served two purposes; providing opportunities for 

the next generation of students to learn about engineering as 

well as addressing lab sustainability by providing a steady 

stream of highly-qualified students to work in the robotics labs 

at UF. This year the team had three incoming freshman work 

on the NaviGator ASV who had been mentored by students in 

MIL prior to attending UF. Although they are young, these 

students have been some of the most productive members of 

the team. They were put in charge of developing the software 

and hardware to complete the Detect and Deliver Challenge. 

They were able to complete this challenge so well, they were 

also put in charge of the Identify Symbols and Dock 

Challenge. The lab is excited to have these new students and 

looks forward to seeing what they can accomplish in the 

upcoming RoboBoat and RoboSub Competitions and beyond. 

 

 

Fig 14. Potawatomi students working to evaluate a historical site while 

learning about STEAM 

VI. CONCLUSION 

This paper presents the University of Florida’s autonomous 

surface vehicle, NaviGator ASV, for use in the 2016 Maritime 

RobotX Challenge. Sacrificing speed for maneuverability, the 

vessel’s four thrusters give the ASV an additional degree of 

freedom when compared to traditional skid-steer vessels. The 

novel use of an automotive cargo box for housing electronics 

created an open layout design that allowed for easy access and 

rapid repairs. An iterative approach created a strong software 

foundation that was exhaustively tested with over 130 hours of 

in-water testing. Team NaviGator AMS is ready for the 2016 

Maritime RobotX Challenge due to extensively tested 

software, simple mechanical design, and robust electronics. 
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APPENDIX: SITUATION AWARENESS 

The successful integration of any new technology requires 

that the general public feels comfortable using it. Sometimes 

companies quell initial skepticism with clever marketing. 

However, what really allowed society to accept cars, 

microwaves, washing machines, etc., was the spread of high-

level understanding. For example, the average person may not 

know the intricacies of designing an engine, but the average 

person does know that the engine burns gasoline to make 

motion. 

Even this kind of extremely basic conceptualization is 

critical to trust, because users need to have an idea of what to 

expect with the technology. If someone did not have the 

slightest idea about what a car is, nothing would stop them 

from wondering if this mysterious contraption might explode 

as soon as they got into it. Right now, robots are facing this 

type of skepticism; to many, they are mysterious contraptions. 

With accessible high-level overviews, it is possible to get the 

general public who already know that a car has tires, an 

engine, and brakes, to know that an ASV has a range sensor, a 

motion planner, and a state machine. Then something as basic 

as lights indicating the ASV's decision state would give people 

confidence in knowing what the robot will do. 

However, robots that use machine learning can be 

unpredictable, even for their programmers. For example, if a 

robot's motion planner was learned, one can only hope that the 

situation the robot is in fits well enough with the patterns it 

extracted during training, such that it behaves as expected. For 

a robot that utilizes machine learning, there may no longer be 

a well-defined state machine that can be mapped to indicator 

lights. 

Fortunately, for machine learning and adaptive algorithms, 

there is almost always a way to quantify confidence. For 

example, classifier algorithms typically have some measure of 

how strongly the input matches what the system already 

understands, say with a discriminant value in supervised 

learning or a clustering validation index in unsupervised 

learning. For neural networks, one can use the 

backpropagation error to generate a measure of confidence. 

Even for state estimators like the Kalman Filter, one can take 

the current state covariance as inversely proportional to some 

measure of confidence. The list goes on and on. The team’s 

idea is to make the robot's confidence in its own decisions 

available to everyone around it. If the robot has low 

confidence in a particular scenario, it will effectively display 

the emotion of confusion, perhaps with a blinking indicator or 

a sound. If everyone knows at all times how confident the 

robot is in itself, i.e., a high confidence level in a situation that 

the robot has seen many times before in training, then 

everyone will know when they should be relaxed and when 

they should have their hand on the kill-button. 

On the NaviGator ASV, the team implemented a concurrent 

learning (CL) controller as part of a research project for the 

University of Florida’s Nonlinear Controls and Robotics lab. 

This controller blends machine learning and control theory by 

using a novel update law for batch linear regression that 

allows for simultaneous system identification and Lyapunov-

stable control [10]. Unlike most adaptive controllers which are 

Markovian, this algorithm uses a history stack of states and 

efforts to enable actual convergence of system parameter 

estimates. The ASV ran this algorithm under typical 

conditions without bizarre disturbances to allow the 

parameters to converge to nominal values. With those values 

recorded, the team could then compute and view a measure of 

how off-nominal the current parameter estimates were at any 

given moment. If, for example, a thruster began 

malfunctioning, the model would start to diverge from 

nominal and a software alarm would be raised, alerting the 

users. 
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